1. ホーム
  2. c++

[解決済み】C++11を有効にするとstd::vectorのパフォーマンスが低下する件

2022-04-16 12:51:04

質問

C++11を有効にすると、小さなC++スニペットで興味深いパフォーマンスの後退を発見しました。

#include <vector>

struct Item
{
  int a;
  int b;
};

int main()
{
  const std::size_t num_items = 10000000;
  std::vector<Item> container;
  container.reserve(num_items);
  for (std::size_t i = 0; i < num_items; ++i) {
    container.push_back(Item());
  }
  return 0;
}

g++ (GCC) 4.8.2 20131219 (prerelease) とC++03で、私は取得します。

milian:/tmp$ g++ -O3 main.cpp && perf stat -r 10 ./a.out

Performance counter stats for './a.out' (10 runs):

        35.206824 task-clock                #    0.988 CPUs utilized            ( +-  1.23% )
                4 context-switches          #    0.116 K/sec                    ( +-  4.38% )
                0 cpu-migrations            #    0.006 K/sec                    ( +- 66.67% )
              849 page-faults               #    0.024 M/sec                    ( +-  6.02% )
       95,693,808 cycles                    #    2.718 GHz                      ( +-  1.14% ) [49.72%]
  <not supported> stalled-cycles-frontend 
  <not supported> stalled-cycles-backend  
       95,282,359 instructions              #    1.00  insns per cycle          ( +-  0.65% ) [75.27%]
       30,104,021 branches                  #  855.062 M/sec                    ( +-  0.87% ) [77.46%]
            6,038 branch-misses             #    0.02% of all branches          ( +- 25.73% ) [75.53%]

      0.035648729 seconds time elapsed                                          ( +-  1.22% )

一方、C++11を有効にすると、性能は大きく低下します。

milian:/tmp$ g++ -std=c++11 -O3 main.cpp && perf stat -r 10 ./a.out

Performance counter stats for './a.out' (10 runs):

        86.485313 task-clock                #    0.994 CPUs utilized            ( +-  0.50% )
                9 context-switches          #    0.104 K/sec                    ( +-  1.66% )
                2 cpu-migrations            #    0.017 K/sec                    ( +- 26.76% )
              798 page-faults               #    0.009 M/sec                    ( +-  8.54% )
      237,982,690 cycles                    #    2.752 GHz                      ( +-  0.41% ) [51.32%]
  <not supported> stalled-cycles-frontend 
  <not supported> stalled-cycles-backend  
      135,730,319 instructions              #    0.57  insns per cycle          ( +-  0.32% ) [75.77%]
       30,880,156 branches                  #  357.057 M/sec                    ( +-  0.25% ) [75.76%]
            4,188 branch-misses             #    0.01% of all branches          ( +-  7.59% ) [74.08%]

    0.087016724 seconds time elapsed                                          ( +-  0.50% )

どなたか説明してください。これまでのところ、私の経験では、C++11を有効にすることでSTLが高速化し、特に移動セマンティクスのおかげで高速化しました。

EDITです。 提案されたように container.emplace_back(); の代わりに、C++03版と同程度の性能になる。C++03版では、どうすれば push_back ?

milian:/tmp$ g++ -std=c++11 -O3 main.cpp && perf stat -r 10 ./a.out

Performance counter stats for './a.out' (10 runs):

        36.229348 task-clock                #    0.988 CPUs utilized            ( +-  0.81% )
                4 context-switches          #    0.116 K/sec                    ( +-  3.17% )
                1 cpu-migrations            #    0.017 K/sec                    ( +- 36.85% )
              798 page-faults               #    0.022 M/sec                    ( +-  8.54% )
       94,488,818 cycles                    #    2.608 GHz                      ( +-  1.11% ) [50.44%]
  <not supported> stalled-cycles-frontend 
  <not supported> stalled-cycles-backend  
       94,851,411 instructions              #    1.00  insns per cycle          ( +-  0.98% ) [75.22%]
       30,468,562 branches                  #  840.991 M/sec                    ( +-  1.07% ) [76.71%]
            2,723 branch-misses             #    0.01% of all branches          ( +-  9.84% ) [74.81%]

   0.036678068 seconds time elapsed                                          ( +-  0.80% )

解決方法は?

あなたの投稿に書かれているオプションで、私のマシンであなたの結果を再現することができます。

しかし リンク時間最適化 (また -flto フラグを gcc 4.7.2 に設定した場合)、結果は同じです。

(元のコードをコンパイルしています。 container.push_back(Item()); )

$ g++ -std=c++11 -O3 -flto regr.cpp && perf stat -r 10 ./a.out 

 Performance counter stats for './a.out' (10 runs):

         35.426793 task-clock                #    0.986 CPUs utilized            ( +-  1.75% )
                 4 context-switches          #    0.116 K/sec                    ( +-  5.69% )
                 0 CPU-migrations            #    0.006 K/sec                    ( +- 66.67% )
            19,801 page-faults               #    0.559 M/sec                  
        99,028,466 cycles                    #    2.795 GHz                      ( +-  1.89% ) [77.53%]
        50,721,061 stalled-cycles-frontend   #   51.22% frontend cycles idle     ( +-  3.74% ) [79.47%]
        25,585,331 stalled-cycles-backend    #   25.84% backend  cycles idle     ( +-  4.90% ) [73.07%]
       141,947,224 instructions              #    1.43  insns per cycle        
                                             #    0.36  stalled cycles per insn  ( +-  0.52% ) [88.72%]
        37,697,368 branches                  # 1064.092 M/sec                    ( +-  0.52% ) [88.75%]
            26,700 branch-misses             #    0.07% of all branches          ( +-  3.91% ) [83.64%]

       0.035943226 seconds time elapsed                                          ( +-  1.79% )



$ g++ -std=c++98 -O3 -flto regr.cpp && perf stat -r 10 ./a.out 

 Performance counter stats for './a.out' (10 runs):

         35.510495 task-clock                #    0.988 CPUs utilized            ( +-  2.54% )
                 4 context-switches          #    0.101 K/sec                    ( +-  7.41% )
                 0 CPU-migrations            #    0.003 K/sec                    ( +-100.00% )
            19,801 page-faults               #    0.558 M/sec                    ( +-  0.00% )
        98,463,570 cycles                    #    2.773 GHz                      ( +-  1.09% ) [77.71%]
        50,079,978 stalled-cycles-frontend   #   50.86% frontend cycles idle     ( +-  2.20% ) [79.41%]
        26,270,699 stalled-cycles-backend    #   26.68% backend  cycles idle     ( +-  8.91% ) [74.43%]
       141,427,211 instructions              #    1.44  insns per cycle        
                                             #    0.35  stalled cycles per insn  ( +-  0.23% ) [87.66%]
        37,366,375 branches                  # 1052.263 M/sec                    ( +-  0.48% ) [88.61%]
            26,621 branch-misses             #    0.07% of all branches          ( +-  5.28% ) [83.26%]

       0.035953916 seconds time elapsed  

その理由については、生成されたアセンブリコード( g++ -std=c++11 -O3 -S regr.cpp ). C++11モードでは、生成されるコードが大幅に乱雑になる C++98モードの場合よりも、また 関数のインライン化

void std::vector<Item,std::allocator<Item>>::_M_emplace_back_aux<Item>(Item&&)

失敗 C++11 モードで、デフォルトの inline-limit .

この失敗したインラインはドミノ倒しになっています。 この関数が呼び出されるからではなく (呼び出されてもいない!)のですが、覚悟を決めなければならないからです。 もし が呼び出されます。 関数の引数( Item.aItem.b ) がすでに正しい位置にあることが必要です。このため は、かなり雑なコードになります。

以下は、生成されたコードの該当部分です。 インライン化成功 :

.L42:
    testq   %rbx, %rbx  # container$D13376$_M_impl$_M_finish
    je  .L3 #,
    movl    $0, (%rbx)  #, container$D13376$_M_impl$_M_finish_136->a
    movl    $0, 4(%rbx) #, container$D13376$_M_impl$_M_finish_136->b
.L3:
    addq    $8, %rbx    #, container$D13376$_M_impl$_M_finish
    subq    $1, %rbp    #, ivtmp.106
    je  .L41    #,
.L14:
    cmpq    %rbx, %rdx  # container$D13376$_M_impl$_M_finish, container$D13376$_M_impl$_M_end_of_storage
    jne .L42    #,

このように、コンパクトで素敵なforループが完成しました。では、次に、これを 失敗したインライン の場合です。

.L49:
    testq   %rax, %rax  # D.15772
    je  .L26    #,
    movq    16(%rsp), %rdx  # D.13379, D.13379
    movq    %rdx, (%rax)    # D.13379, *D.15772_60
.L26:
    addq    $8, %rax    #, tmp75
    subq    $1, %rbx    #, ivtmp.117
    movq    %rax, 40(%rsp)  # tmp75, container.D.13376._M_impl._M_finish
    je  .L48    #,
.L28:
    movq    40(%rsp), %rax  # container.D.13376._M_impl._M_finish, D.15772
    cmpq    48(%rsp), %rax  # container.D.13376._M_impl._M_end_of_storage, D.15772
    movl    $0, 16(%rsp)    #, D.13379.a
    movl    $0, 20(%rsp)    #, D.13379.b
    jne .L49    #,
    leaq    16(%rsp), %rsi  #,
    leaq    32(%rsp), %rdi  #,
    call    _ZNSt6vectorI4ItemSaIS0_EE19_M_emplace_back_auxIIS0_EEEvDpOT_   #

このコードは雑然としていて、先ほどの場合よりもループの中でいろいろなことが起こっています。 関数の前に call (表示されている最後の行)、引数を適切に配置する必要があります。

leaq    16(%rsp), %rsi  #,
leaq    32(%rsp), %rdi  #,
call    _ZNSt6vectorI4ItemSaIS0_EE19_M_emplace_back_auxIIS0_EEEvDpOT_   #

これが実際に実行されることはなくても、ループは前のものを配置します。

movl    $0, 16(%rsp)    #, D.13379.a
movl    $0, 20(%rsp)    #, D.13379.b

これが面倒なコードにつながる。 関数がない場合 call インライン化に成功したため ループ内には2つの移動命令しかなく、また %rsp (スタックポインタ)。しかし、インライン化に失敗すると、6回移動することになり %rsp .

ただ、私の理論を実証するために(注 -finline-limit )、どちらもC++11モードです。

 $ g++ -std=c++11 -O3 -finline-limit=105 regr.cpp && perf stat -r 10 ./a.out

 Performance counter stats for './a.out' (10 runs):

         84.739057 task-clock                #    0.993 CPUs utilized            ( +-  1.34% )
                 8 context-switches          #    0.096 K/sec                    ( +-  2.22% )
                 1 CPU-migrations            #    0.009 K/sec                    ( +- 64.01% )
            19,801 page-faults               #    0.234 M/sec                  
       266,809,312 cycles                    #    3.149 GHz                      ( +-  0.58% ) [81.20%]
       206,804,948 stalled-cycles-frontend   #   77.51% frontend cycles idle     ( +-  0.91% ) [81.25%]
       129,078,683 stalled-cycles-backend    #   48.38% backend  cycles idle     ( +-  1.37% ) [69.49%]
       183,130,306 instructions              #    0.69  insns per cycle        
                                             #    1.13  stalled cycles per insn  ( +-  0.85% ) [85.35%]
        38,759,720 branches                  #  457.401 M/sec                    ( +-  0.29% ) [85.43%]
            24,527 branch-misses             #    0.06% of all branches          ( +-  2.66% ) [83.52%]

       0.085359326 seconds time elapsed                                          ( +-  1.31% )

 $ g++ -std=c++11 -O3 -finline-limit=106 regr.cpp && perf stat -r 10 ./a.out

 Performance counter stats for './a.out' (10 runs):

         37.790325 task-clock                #    0.990 CPUs utilized            ( +-  2.06% )
                 4 context-switches          #    0.098 K/sec                    ( +-  5.77% )
                 0 CPU-migrations            #    0.011 K/sec                    ( +- 55.28% )
            19,801 page-faults               #    0.524 M/sec                  
       104,699,973 cycles                    #    2.771 GHz                      ( +-  2.04% ) [78.91%]
        58,023,151 stalled-cycles-frontend   #   55.42% frontend cycles idle     ( +-  4.03% ) [78.88%]
        30,572,036 stalled-cycles-backend    #   29.20% backend  cycles idle     ( +-  5.31% ) [71.40%]
       140,669,773 instructions              #    1.34  insns per cycle        
                                             #    0.41  stalled cycles per insn  ( +-  1.40% ) [88.14%]
        38,117,067 branches                  # 1008.646 M/sec                    ( +-  0.65% ) [89.38%]
            27,519 branch-misses             #    0.07% of all branches          ( +-  4.01% ) [86.16%]

       0.038187580 seconds time elapsed                                          ( +-  2.05% )

確かに、コンパイラにその関数をインライン化するようにほんの少し頑張ってもらえば、パフォーマンスの差はなくなる。


では、この話から何を得ることができるのでしょうか?インライン化に失敗すると大きな損失を被る可能性があり、コンパイラの機能をフルに活用する必要があるということです。 リンク時の最適化しか勧められない。 これは私のプログラムに大幅な性能向上(最大2.5倍)をもたらし、必要なのは -flto フラグを使用します。これはかなりお得! ;)

しかし、私はインラインキーワードでコードをゴミ箱に捨てることはお勧めしません。(オプティマイザは、インラインキーワードをホワイトスペースとして扱うことができます)。


素晴らしい質問です!+1